An R package designed for working with GSM data. It offers tools for data manipulation, trip identification, and calculation of trip parameters like duration, maximum distance, and path length. Additionally, it supports trip interpolation.
There are three key issues in determining the foraging trips in GSMs attached to gulls:
You can install the development version of larus from GitHub with:
# install.packages("devtools")
devtools::install_github("MiriamLL/larus")
Load packages
Plot to see changes in battery charge over time.
ggplot(GSM_battery, aes(x=daytime, y=battery_charge)) +
geom_line() +
scale_x_datetime(labels = date_format("%b"),date_breaks = "1 month")+
theme_bw()+
xlab('')
Separating by month makes it more easy to observe
This_month<-'06'
This_month_text<-'Jun'
nest_central_location<-data.frame(Longitude=-110.33979846296234,Latitude=24.28728834326802)
plot_check(my_locs=Trips_01locs,my_central_location=nest_central_location)
Previous_params<-data.frame(trip_id=c("trip_00001"))
trip_number_sequence<-continue_trip_sequence(my_previous=Previous_params$trip_id)
[1] "trip_00001"
[1] 1
Trips_03trips<-Trips_02outside %>%
mutate(num_seq=as.numeric(num_seq))%>%
mutate(trip_number = (cumsum(c(1L, diff(num_seq)) != 1L)))%>%
mutate(trip_number = trip_number +1 + trip_number_sequence)%>%
mutate(trip_number = stringr::str_pad(trip_number, 5, pad = "0"))%>%
mutate(trip_number = paste0("trip_", trip_number))
plot_trips(my_locs=Trips_03trips,my_central_location=nest_central_location)
Trips_04params<-calculate_params(my_locs=Trips_03trips,
my_daytime='daytime',
my_format= "%Y-%m-%d %H:%M:%S",
my_units="hours",
my_divider="trip_number",
my_gaps='gaps_min')
Check if values are plausible
range(Trips_04params$duration)
[1] 0.0000 14.4175
hist(Trips_04params$duration)
compare_notrips(my_params=Trips_05params,my_locs=Trips_04trips)
[1] "There are 156 trips in locations, and 156 in parameters"
[1] "There are 0 trips missing in locations, and 0 in parameters"
trip_id | duration |
---|---|
trip_00136 | 14.417500 |
trip_00138 | 9.833333 |
trip_00157 | 8.250000 |
trip_00087 | 6.250000 |
trip_00145 | 5.503889 |
Subset locations using parameters information, check plot, orange triangle should be on top of cluster of locations
reevaluate_tripid<-'trip_00136'
rest_central_location<-data.frame(Longitude=-110.325-0.001,Latitude=24.17-0.013)
Reevaluate_01locs<-subset_reevaluation(my_tripid=reevaluate_tripid,
my_trip=Trips_03trips,
new_central_location=rest_central_location,
old_central_location=nest_central_location)
Reevaluate_02trips<-identify_trips_reevaluation(my_trip=Reevaluate_01locs,
my_central_location=rest_central_location,
my_previous_params=Trips_05params$trip_id)
[1] "trip_00157"
[1] 157
[1] "From 1 original trip, the change in central location divided the locations to obtain 18 new trips"
plot_trips(my_locs=Reevaluate_02trips,my_central_location=rest_central_location)
Reevaluate_03params<-calculate_params(my_locs=Reevaluate_02trips,
my_daytime='daytime',
my_format= "%Y-%m-%d %H:%M:%S",
my_units="hours",
my_divider="trip_number",
my_gaps="gaps_min")
Params_01params<-rbind(Trips_05params,
Reevaluate_04params)
Locs_01trips<-rbind(Trips_04trips,
Reevaluate_03trips)
compare_notrips(my_params=Params_01params,my_locs=Locs_01trips)
[1] "There are 174 trips in locations, and 174 in parameters"
[1] "There are 0 trips missing in locations, and 0 in parameters"
Remove reevaluated trips
compare_notrips(my_params=Params_02params,my_locs=Locs_02trips)
[1] "There are 173 trips in locations, and 173 in parameters"
[1] "There are 0 trips missing in locations, and 0 in parameters"
Params_00criteria<-classify_params(my_params=Params_02params)
check_trip_criteria(my_params=Params_00criteria)
[1] "From 173 trips: 27.75% were trip_longer_than_30mins and 72.25% were trip_shorter_than_30mins. Trips shorter than 30 minutes are not considered real trips. Remove these trips from analyses. "
check_resolution_criteria(my_params=Params_resolution)
[1] "From 27 trips: 3.7 % (n = 1) were low_resolution_gaps_more_60_mins and 96.3 % (n = 26) were ok_resolution_gaps_less_60_mins. Evaluate if trips with low resolution are to be kept"
check_length_criteria(my_params=Params_02criteria)
[1] "From 48 trips: 100% (n = 48) were shorter_than_24h_keep_centralloc and NA% (n = NA) were NA. Evaluate if trips longer than 24 hrs is because of a change in central location"
Locs_01class<-classify_locs(Inter_params=Params_03criteria,
Inter_locs=Locs_02trips)
Trips must have at least three locations. Remove small trips
Path_01locs<-as.data.frame(Locs_02class)
short_trips<-Path_01locs %>%
group_by(trip_number)%>%
tally()%>%
arrange(-n)%>%
filter(n<3)
length(short_trips$trip_number)
[1] 0
Might take some time
Path_03distances<-distances_per_trip(my_df=Path_02locs,
my_divider='trip_number')
beepr::beep(sound=1)
Check if values are plausible
range(Path_03distances$pointsdist_km,na.rm=TRUE)
Params_path<-merge(Params_03criteria,
Path_04params,
by='trip_id')
Check if values are plausible
range(Params_path$path_lenght_km)
[1] 0.03 49.45
nest_central_location<-data.frame(Longitude=-110.33979846296234,Latitude=24.28728834326802)
Params_leaving_returning<-calculate_leaving_returning(my_locs=Path_03distances,
my_central_location=nest_central_location)
Params_sumpath<-Params_leaving_returning %>%
dplyr::rename(trip_id=trip_number)%>%
dplyr::right_join(Params_path,by='trip_id')
Identify central location, if is from the nest it add leaving and returning, if is outside the nest it doesn’t add this.
Params_wpath<-Params_sumpaths %>%
dplyr::select(trip_month_id,central_location,
path_lenght_km,leaving_distance_km,returning_distance_km,
sum_path_lenght,
central_lat,central_lon,
trip_number,
#countday,day,season,month,n,
trip_start,trip_end,
duration,min_gap,max_gap,
trip_size,resolution,params_analyses,interpolation
)
Check if there are outliers
knitr::kable(head(Params_wpath %>%
dplyr::arrange(-sum_path_lenght)%>%
dplyr::select(trip_month_id,sum_path_lenght),5))
trip_month_id | sum_path_lenght |
---|---|
Jun_a_trip_00138 | 50.81 |
Jun_a_trip_00145 | 50.71 |
Jun_a_trip_00087 | 43.84 |
Jun_a_trip_00049 | 41.89 |
Jun_a_trip_00015 | 41.61 |
Path_04speed<-Path_03distances %>%
mutate(speed_if_directly_flying=pointsdist_km/gaps_min*60)%>%
select(ID,trip_number,num_seq,
#countday,season,month,
daytime,
Longitude,Latitude,
#battery_charge,battery_class, gaps_class,
#central_location,day_or_night,
#trip_size,resolution,params_analyses,interpolation,
pointsdist_km,gaps_min,
#ground.speed,
speed_if_directly_flying
)
knitr::kable(head(Path_04speed %>%
#filter(speed_if_directly_flying > 70)%>%
arrange(-speed_if_directly_flying)%>%
select(trip_number,speed_if_directly_flying),5))
trip_number | speed_if_directly_flying | |
---|---|---|
trip_00009.13 | trip_00009 | 60.22719 |
trip_00134.460 | trip_00134 | 49.76471 |
trip_00017.58 | trip_00017 | 48.42000 |
trip_00147.756 | trip_00147 | 46.38655 |
trip_00012.26 | trip_00012 | 46.08000 |
In case there is a trip exceeding speed:
exceeds_speed<-'trip_00009'
plot_trips(my_locs=Path_04speed %>%
filter(trip_number==exceeds_speed),my_central_location=nest_central_location)+
ggtitle('If the speed is >70 km, \n remove that trip or reevaluate it')
And remember gulls do whatever they want
So remove it from the list if its difficult to find the central location
compare_notrips(my_params=Params_wpath,my_locs=Path_speed)
[1] "There are 47 trips in locations, and 47 in parameters"
[1] "There are 0 trips missing in locations, and 0 in parameters"
Maxdist_params<-calculate_maxdist(my_data = Locs_02class,
central_location = data.frame(Longitude=-110.34,Latitude=24.28),
divider="trip_number")
trip_id | maxdist_km |
---|---|
trip_00002 | 5.15 |
trip_00009 | 14.43 |
trip_00011 | 14.36 |
trip_00012 | 14.26 |
trip_00015 | 13.86 |
Params_final<-Params_wpath %>%
right_join(Maxdist_params, by='trip_id')%>%
select(trip_id,
duration,sum_path_lenght,maxdist_km)
trip_id | duration | sum_path_lenght | maxdist_km |
---|---|---|---|
trip_00002 | 0.6655556 | 12.65 | 5.15 |
trip_00011 | 1.6800000 | 33.75 | 14.36 |
trip_00012 | 2.0000000 | 33.20 | 14.26 |
trip_00015 | 1.8333333 | 41.61 | 13.86 |
trip_00017 | 1.4769444 | 32.60 | 14.07 |
This function interpolate trips to a similar resolution. Here using ‘900 sec’.
Interpolation_trips<-Interpolation_trips
Interpolated_locs<-interpolate_trips(my_df=Interpolation_trips,
interval='900 sec',
column_datetime='daytime',
column_trip='trip_number',
column_lat='Latitude',
column_lon='Longitude',
datetime_format="%Y-%m-%d %H:%M:%S")
Lerma, M. 2025. R package ‘larus’. https://github.com/MiriamLL/larus